

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025

Product name: Acoustic Panels Fovere

Manufacturer: Fovere Sp. z o.o.

ACOUSTIC

Published on 13 October 2025 Valid until 13 October 2030

GENERAL INFORMATION

EPD OWNER

Manufacturer / EPD Holder	Fovere Sp. z o.o.
Address	Warszawska 40, 05-082 Blizne Łaszczyńskiego, POLAND
Contact details	Barbara Łukasiak barbara@fovere.pl
Website	https://fovere.pl/

PRODUCT IDENTIFICATION

Product name	Acoustic Panels Fovere
Place(s) of production	POLAND

EPD INFORMATION

EPD Polska	Multicert Sp. z o.o.
program operator	Ul. Mydlarska 47, 04-690 Warszawa, Poland
	www.epd.org.pl, epd@epd.org.pl
EPD standards	This EPD is in accordance with EN 15804+A2 and ISO 14025 standards.
Product category rules	The CEN standard EN 15804+A2 serves as the core PCR.
EPD verification	Independent verification of this EPD and data, according to ISO 14025: $\hfill \square$ Internal certification $\hfill \square$ External verification
EPD verifier	Izabela Sztamberek Sochan, Ph.D.
EPD number	EPD-P 02.10.2025
Registration:	EPD Polska www.epd.org.pl
Publishing date ¹	13 October 2025
EPD valid until	13 October 2030
Reasons for performing LCA	B2B
Accountability	The EPD Holder is responsible for the information provided and evidence. Multicert Sp. z o.o. does not hold responsibility for the manufacturer information, life cycle assessment data nor supporting evidence.

EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

 $^{^1}$ Update note: This Environmental Product Declaration (EPD) — version 2.0, issued on 13 October 2025 — replaces version 1.0 (published on 9 September 2025, EPD-P 01.09.2025). The initial release included LCA data for a different product. This edition provides the correct life cycle assessment data for Acoustic Panels Fovere. All other content remains unchanged.

COMPANY INFORMATION

HOLDER OF THE EPD

Fovere Sp. z o.o. Warszawska 40, 05-082 Blizne Łaszczyńskiego, POLAND

COMPANY PROFILE

Fovere is a Polish manufacturer specializing in next-generation acoustic solutions for interior spaces. The company combines advanced technology with a strong commitment to sustainability, offering acoustic panels, ceilings, and partitions made from eco-friendly materials, including PET with up to 60% post-consumer recycled content.

All products are designed and manufactured in Poland, ensuring full control over quality, production schedules, and design details. Fovere's systems are developed with architects, interior designers, and investors in mind, delivering both acoustic performance and distinctive aesthetics through carefully designed textures, colors, and formats.

The company's products hold the necessary fire resistance and acoustic performance certificates, making them suitable for use in offices, schools, cultural institutions, and commercial buildings. In addition to manufacturing, Fovere provides technical advice, product selection support, and assistance throughout the project lifecycle.

PRODUCT INFORMATION

PRODUCT DESCRIPTION

Acoustic Panels Fovere are lightweight, decorative, and sound-absorbing elements designed to enhance acoustic comfort in interior spaces. They are produced from PET boards containing up to 60% post-consumer recycled polyester fibers, which are cut and finished by Fovere in Poland.

Fovere Acoustic Panels have been developed with the needs of architects, interior designers, and investors in mind. Their distinct surface texture, carefully designed color range, and availability in large formats make them suitable for various interior design styles. The panels define a new standard of acoustic comfort and aesthetics in workplaces and public spaces, combining high sound absorption with design flexibility.

The panels carry relevant fire resistance and acoustic performance certificates and can be safely applied in environments with higher functional and safety requirements, such as offices, schools, cultural institutions, and commercial interiors.

PRODUCT APPLICATION

Acoustic Panels Fovere are intended for acoustic enhancement in offices, schools, cultural institutions, and commercial spaces. They can be installed on walls, ceilings, or used as partition systems, combining functional performance with aesthetic design flexibility.

PRODUCT STANDARDS

The product complies with:

ISO 11654:1997 -Acoustics - Sound absorbers for use in buildings - Rating of sound absorption

EN ISO 354:2003- Acoustics - Measurement of sound absorption in a reverberation room

EN 13501-1:2007+A1:2009 - Fire classification of construction products and building elements – Part 1: Classification using data from reaction to fire tests.

ADDITIONAL TECHNICAL INFORMATION

Lightweight yet stable structure allows versatile application and flexible space design

Panel thickness: 12 mm

Standard format: 3050 × 1250 mm

Approximate weight: 9.15 kg per panel (density $\sim 2.4 \text{ kg/m}^2$)

After edge trimming, the net panel dimensions are approximately 300×120 cm

Further information can be found at https://fovere.pl/

Reference Service Life (RSL): 50 years (under normal indoor conditions, Class A exposure).

PRODUCT RAW MATERIAL COMPOSITION

Recycled PET fiber – approx. 60%

Bicomponent PET/PBT fiber – approx. 40%

Additives and packaging materials – minor share (<1%)

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0.1% (1000 ppm).

PRODUCT LIFE-CYCLE

RAW MATERIALS ACQUISITION AND TRANSPORT (A1, A2)

Module A1 covers the supply of raw materials for the acoustic panels. The main inputs are post-consumer recycled PET fibers and bicomponent PET/PBT fibers. These fibers are purchased from suppliers in Europe and delivered to the board producer

Module A2 includes the transport of fibers from the suppliers to the board production facility, as well as subsequent transport of PET fiber boards to Fovere's site in Poland. Transport is carried out mainly by road using diesel trucks.

MANUFACTURING (A3)

The manufacturing stage includes two main steps: the production of PET fiber boards and their conversion into finished acoustic panels.

At the board producer's facility, recycled PET fibers and bicomponent PET/PBT fibers are blended and processed through thermal bonding to form rigid sound-absorbing boards. Production scraps generated during this process are incinerated with energy recovery. The environmental burdens of waste incineration are included in Module A3, while the recovered energy is credited in Module D as avoided fossil-based heat.

These PET fiber boards are subsequently transported to Fovere's site in Poland. At Fovere, the boards are cut into panels of specified dimensions using a cold oscillating knife. Cutting generates production scraps that are disposed of in sanitary landfill. The associated impacts from landfilling, including transport to the landfill, are included in Module A3.

The finished panels are trimmed to ensure clean edges, sorted, and inspected for dimensional accuracy, surface quality, and color consistency. Approved panels are labeled for traceability, packaged with protective materials, and stored under controlled conditions until distribution.

PACKAGING AND DISTRIBUTION (A4)

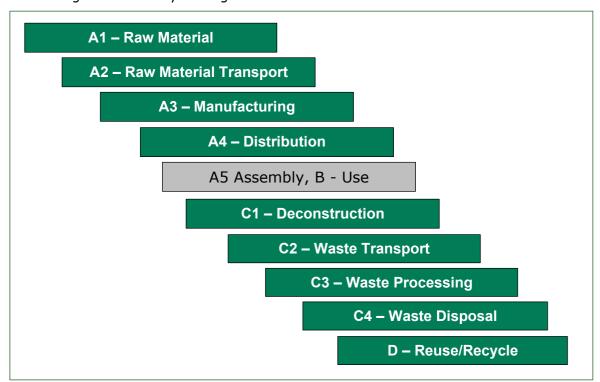
Finished acoustic panels are stacked on wooden pallets and secured with stretch foil and PE tape. Packaging ensures protection during handling, storage, and transportation.

Products are distributed primarily to European markets. Transport is assumed to be carried out by lorry (>16 t, EURO 6 standard) over an average distance of 200 km from the production site to customers.

END OF LIFE (C1,C2, C3, C4, D)

Module C1: At the end of their service life, Fovere Acoustic Panels are assumed to be manually dismantled on-site using electric power screwdrivers. Electricity consumption is assumed to equal the energy required to operate a 300 W screwdriver for 1.5 minutes per kilogram of product.

Module C2: After dismantling, the panels are transported approximately 50 km by lorry (>16 t, EURO 6 standard) to a local landfill site. Module C2 accounts for the environmental impacts of this transportation.


Module C3 assumes mechanical pre-treatment (sorting/size reduction) of dismantled panels prior to disposal.

Module C4 reflects the final disposal of 100% of the panel mass in sanitary landfill, with associated emissions and environmental impacts reported in this module. This 100% landfill assumption reflects the product's thermally bonded PET and PET/PBT bicomponent fibre structure, which cannot be practically separated for material recycling; a conservative landfill-only scenario is therefore adopted.

Alternative end-of-life pathways, including energy recovery through incineration, were evaluated during the LCA study. The analysis demonstrated that incineration of the thermally bonded PET/PBT composite results in higher environmental burdens than landfilling for this specific material composition. The landfill scenario therefore represents the environmentally optimal disposal route among technically feasible options.

Module D includes the potential environmental benefits associated with the incineration of production scraps generated during PET board manufacturing. The recovered energy from this process is assumed to substitute fossil-based energy carriers in industrial applications. No benefits are reported for panel cutting scraps at Fovere or for the end-of-life treatment of panels, as these are landfilled without energy recovery.

Diagram 1 - Life cycle stages:

LIFE-CYCLE ASSESSMENT

LIFE-CYCLE ASSESSMENT INFORMATION

Period for data 2024 year

DECLARED AND FUNCTIONAL UNIT

Declared unit	1 kg
Mass per declared unit	1 kg

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	-
Biogenic carbon content in product, kg C	0,01

SYSTEM BOUNDARY

The scope of the EPD is "cradle to gate with options". The modules A1 (Raw material supply), A2 (Transport) and A3 (Manufacturing), A4 (Distribution); C1 (Deconstruction), C2 (Waste Transport), C3 (Waste Processing), C4 (Waste Disposal) and D (Avoided burdens) are included in the study.

Product	stage	As	sembly :	stage		Use stage						End	d of life		Beyond the system boundaries	
A1	A2	А3	A4	A5	В1	В2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
х	х	х	х	MND	MNR	MNR	MNR	MNR	MNR	MNR	MNR	х	х	х	х	х
Raw materials	Transport	Manufacturing	Distribution	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction	Waste transport	Waste processing	Disposal	Benefits beyond system boundary

Modules not declared = MND. Modules not relevant = MNR.

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the *EN* 15804:2012+A2:2019. The study does not exclude any hazardous materials or substances.

The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes which data are available for are included in the calculation. There is no neglected unit process more than 1% of total mass and energy flows. The total neglected input and output flows do also not exceed 5% of energy usage or mass. The life cycle analysis includes all industrial processes from raw material acquisition to production, and distribution.

The production of capital equipment, construction activities, and infrastructure, maintenance and operation of capital equipment, personnel-related activities, energy, and water use related to company management and sales activities are excluded.

ESTIMATES AND ASSUMPTIONS

This LCA study has been conducted in accordance with the applicable methodological principles, including performance metrics, system boundaries, data quality requirements, allocation procedures, and rules for data inclusion and exclusion. The key assumptions and estimates applied in the modelling are outlined below:

Module A1: A 100% mass balance approach was applied to all raw material inputs based on data provided by the panel manufacturer and board supplier. Recycled PET fibers and bicomponent PET/PBT fibers were modelled using corresponding processes from the ecoinvent database to represent upstream environmental impacts. The recycled PET is of post-consumer origin.

Module A2: Average transport distances were calculated based on the locations of raw material suppliers and intermediate board production, allocated proportionally to the declared unit:

- Transport of recycled PET fibers from suppliers in Europe to the board production site.
- Transport of PET fiber boards to the Fovere plant in Poland.
- For finished panels, an average distribution distance of 200 km to customers in European markets was assumed.

Module A3: Energy inputs (electricity, natural gas, and other utilities) were included based on site-specific consumption data from both the board producer and Fovere. Onsite water use is negligible and excluded from the system boundary. Background water use is included via database datasets On-site waste management was included:

- Production scraps from board manufacturing are incinerated with energy recovery in industrial applications.
- Cutting scraps generated at Fovere are disposed of in sanitary landfill.

Module D: Environmental credits are included for energy recovered at the board production stage: exported electricity substitutes the Polish residual-mix grid (fossil primary energy factor 3.0 MJp/MJ) and recovered heat substitutes natural-gas boiler heat ($\eta = 0.93$, LHV). No credits are assigned to panel-cutting scraps at Fovere or to end-of-life panels, which are landfilled without energy recovery; avoided burdens are reported in Module D.

ALLOCATION

The allocation is carried out in accordance with the provisions of EN 15804 + A2. The information provided for the reference year 2024 covers all acoustic panels produced by Fovere. Since production resources and processing steps are similar across product variants, inputs and outputs have been allocated on a mass basis. All material and energy flows, as well as emissions, were inventoried and distributed proportionally to the declared unit of 1 kilogram of acoustic panel.

DATA QUALITY

For foreground data, the LCA study relies on high-quality primary data gathered by both Fovere and the board producer for the year 2024, including average transport distances for material supplies and final product shipments. All relevant background data sets have been sourced from the OpenLCA software's database: ecoinvent 3.9.1, which includes consistent and well-documented data sets accessible in the ecoinvent online database or through the ecoinvent database documentation.

GEOGRAPHIC REPRESENTATIVENESS

The specified land or region where the product system is manufactured and managed is Poland, Europe.

ENVIRONMENTAL IMPACT DATA: Acoustic Panels Fovere

CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2

Impact category	Unit	A1	A2	А3	A4	A 5	B1-B7	C1	C2	C3	C4	D
GWP-Total	kg CO2 eq.	2,54E+00	5,01E-01	2,33E-01	4,93E-02	MND	MNR	5,19E-03	2,78E-02	1,24E-02	9,92E-02	-1,26E-01
GWP-fossil	kg CO2 eq.	2,49E+00	5,00E-01	2,33E-01	4,92E-02	MND	MNR	5,19E-03	2,78E-02	1,22E-02	9,90E-02	-1,26E-01
GWP-biogenic	kg CO2 eq.	4,48E-02	3,92E-04	3,51E-05	3,80E-05	MND	MNR	-1,00E-06	2,45E-05	1,76E-04	1,41E-04	9,18E-06
GWP-luluc	kg CO2 eq.	1,59E-03	2,72E-04	8,81E-06	2,25E-05	MND	MNR	7,15E-07	1,63E-05	2,20E-06	2,31E-06	-1,60E-05
ODP	kg CFC-11 eq.	7,13E-06	1,06E-08	1,44E-09	1,07E-09	MND	MNR	3,83E-11	6,04E-10	2,66E-10	2,95E-10	-2,20E-09
AP	mol H+ eq.	1,16E-02	2,73E-03	2,37E-04	1,53E-04	MND	MNR	3,75E-05	8,50E-05	6,11E-05	6,89E-05	-6,90E-04
EP-freshwater	kg P eq.	1,14E-03	3,60E-05	1,38E-05	3,40E-06	MND	MNR	2,60E-06	2,35E-06	7,43E-07	7,09E-07	-4,70E-05
EP-marine	kg N eq.	2,29E-03	8,05E-04	5,46E-05	5,25E-05	MND	MNR	5,28E-06	2,74E-05	2,56E-05	2,14E-03	-1,00E-04
EP-terrestrial	mol N eq.	2,03E-02	8,66E-03	5,26E-04	5,54E-04	MND	MNR	5,43E-05	2,88E-04	2,76E-04	3,04E-04	-1,07E-03
POCP	kg NMVOC eq.	1,23E-02	3,09E-03	1,46E-04	2,30E-04	MND	MNR	1,55E-05	1,23E-04	1,03E-04	1,38E-04	-3,40E-04
ADPE (disc.2)	kg Sb eq.	8,11E-06	1,25E-06	2,12E-08	1,15E-07	MND	MNR	1,30E-09	8,95E-08	1,58E-08	1,23E-08	-2,90E-08
ADPF (disc.2)	MJ, (NCV)	4,95E+01	7,03E+00	3,50E-01	6,98E-01	MND	MNR	6,02E-02	3,93E-01	2,18E-01	2,37E-01	-1,59E+00
WDP (disc.2)	m3 World eq.	1,29E+00	3,53E-02	5,32E-03	3,36E-03	MND	MNR	1,79E-04	2,24E-03	3,32E-03	2,23E-03	-4,50E-03
Acronyms	- Climate chang Eutrophication, f	WP-total – Climate change, total global warming potential; GWP-fossil – Climate change, fossil fuels; GWP-biogenic – Climate change, biogenic carbon; GWP-luluc Climate change, land use and land use change; ODP – Ozone layer depletion; AP – Acidification of terrestrial and freshwater environments; EP-freshwater – utrophication, freshwater; EP-marine – Eutrophication, marine; EP-terrestrial – Eutrophication, terrestrial; POCP – Photochemical ozone formation (smog ormation); ADPE – Abiotic depletion, minerals and metals; ADPF – Abiotic depletion, fossil fuels; WDP – Water scarcity (water use deprivation potential); NCV - net alorific value.										
Disclaimer 2	The results of th indicator.	is environme	ntal impact in	dicator shall l	oe used with o	care as the ur	ncertainties o	n these resul	ts are high or	as there is lir	nited experie	nced with the

ADDITIONAL ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A4	A5	B1-B7	C1	C2	C3	C4	D
PM	Disease Incidence	8,98E-08	2,75E-08	8,20E-10	2,76E-09	MND	MNR	6,37E-11	1,35E-09	8,92E-09	1,60E-09	-1,30E-09
IRP (disc.1)	kBq U235 eq.	kBq U235 eq. 1,45E-01 1,08E-02 9,36E-04 1,12E-03 MND MNR 8,46E-05 7,79E-04 1,20E-03 6,98E-04 -1,69E-03									-1,69E-03	
ETP-fw (disc.2)	CTUe	TUe 1,17E+01 3,54E+00 5,82E-01 3,50E-01 MND MNR 1,18E-02 2,06E-01 1,52E-01 4,70E-01 -2,31E-01										
HTP-c (disc.2)	CTUh	1,23E-09	2,31E-10	4,88E-11	2,03E-11	MND	MNR	1,35E-12	1,40E-11	5,45E-12	5,92E-12	-2,90E-11
HTP-nc (disc.2)	CTUh	TUh 2,42E-08 4,08E-09 5,27E-10 4,04E-10 MND MNR 4,61E-11 2,42E-10 6,53E-11 2,46E-10 -8,60E-10										
SQP (disc.2)	Dimensionless	1,53E+01	3,35E+00	8,95E-02	3,55E-01	MND	MNR	1,22E-02	1,62E-01	5,01E-01	5,71E-01	-2,25E-01
Acronyms	PM – Particulate mat HTP-c – Human toxid		••		• •	_	•	•	•	•	cotoxicity, fre	shwater;
Disclaimer 1		nis impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects use to possible accidents or occupational exposure.										
Disclaimer 2	The results of this er indicator.	nvironmental	impact indica	ator shall be u	used with care	e as the unce	rtainties on t	hese results a	are high or as	s there is limi	ted experiend	ced with the

USE OF NATURAL RESOURCES

Impact category	Unit	A 1	A2	А3	A4	A5	B1-B7	C1	C2	C3	C4	D
PERE	MJ, (NCV)	4,35E+00	1,21E-01	1,69E-02	1,21E-02	MND	MNR	2,33E-03	8,49E-03	1,99E-02	1,19E-02	-4,35E-02
PERM	MJ, (NCV)	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MNR	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	MJ, (NCV)	4,35E+00	1,21E-01	1,69E-02	1,21E-02	MND	MNR	2,33E-03	8,49E-03	1,99E-02	1,19E-02	-4,35E-02
PENRE	MJ, (NCV)	4,95E+01	7,03E+00	3,50E-01	6,98E-01	MND	MNR	6,02E-02	3,93E-01	2,18E-01	2,37E-01	-1,59E+00
PENRM	MJ, (NCV)	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MNR	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PENRT	MJ, (NCV)	4,95E+01	7,03E+00	3,50E-01	6,98E-01	MND	MNR	6,02E-02	3,93E-01	2,18E-01	2,37E-01	-1,59E+00
SM	kg	6,00E-01	0,00E+00	0,00E+00	0,00E+00	MND	MNR	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ, (NCV)	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MNR	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ, (NCV)	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MNR	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	m3	7,31E-02	1,18E-03	2,82E-03	1,14E-04	MND	MNR	2,10E-04	7,53E-05	2,91E-04	3,03E-04	-3,76E-03
Acronyms	renewable pr energy resou	ERE – Use of renewable primary energy as energy carriers; PERM – Use of renewable primary energy resources as raw materials; PERT – Total use of inewable primary energy resources (PERE + PERM); PENRE – Use of non-renewable primary energy as energy carriers; PENRM – Use of non-renewable primary energy resources as raw materials; PENRT – Total use of non-renewable primary energy resources (PENRE + PENRM); SM – Use of secondary material; RSF – se of renewable secondary fuels; NRSF – Use of non-renewable secondary fuels; FW – Net use of fresh water; NCV - net calorific value.										

OUTPUT FLOWS

Impact category	Unit	A 1	A2	А3	A4	A5	B1-B7	C1	C2	C3	C4	D
CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MNR	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MFR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MNR	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MER	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MNR	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
EEE	МЈ	0,00E+00	0,00E+00	3,07E-01	0,00E+00	MND	MNR	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
EET	МЈ	0,00E+00	0,00E+00	6,20E-01	0,00E+00	MND	MNR	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Acronyms	CRU – Comp	RU – Components for re-use; MFR – Materials for recycling; MER – Materials for energy recovery; EEE – Exported electrical energy; EET – Exported thermal energy.										

WASTE

Impact category	Unit	A1	A2	A 3	A4	A 5	B1-B7	C1	C2	C3	C4	D
HWD	kg	3,67E-03	4,37E-05	5,80E-07	4,41E-06	MND	MNR	5,06E-08	2,48E-06	9,81E-07	1,09E-06	-3,10E-06
NHWD	kg	3,89E-02	2,15E-04	1,54E-05	2,00E-05	MND	MNR	9,02E-07	1,43E-05	4,44E-06	4,69E-06	-2,30E-05
RWD	kg	3,48E-05	2,64E-06	2,36E-07	2,74E-07	MND	MNR	2,08E-08	1,92E-07	2,69E-07	1,58E-07	-4,20E-07
Acronyms	HWD – Haz	WD – Hazardous waste disposed; NHWD – Non-hazardous waste disposed; RWD – Radioactive waste disposed.										

SCENARIO DOCUMENTATION

Manufacturing energy scenario documentation

Scenario parameter	Value
Electricity data source and quality	Emission Factors for Electricity in Poland reported in December 2024 by KOBiZE - the National Centre for Emissions Management in Poland.
Electricity CO2e / kWh	0,701 kg CO2e / kWh

BIBLIOGRAPHY

ISO 14025:2010 Environmental labels and declarations – Type III environmental declarations. Principles and procedures.

ISO 14040:2006 Environmental management – Life cycle assessment – Principles and frameworks.

ISO 14044:2006 Environmental management – Life cycle assessment – Requirements and guidelines.

ISO 20915:2018 Life cycle inventory calculation methodology for steel products.

EN 15804:2012+A2:2019 Sustainability in construction works – Environmental product declarations – Core rules for the product category of construction products.

EN 15978:2011 Sustainability of construction works – Assessment of environmental performance of buildings – Calculation method.

ecoinvent Association (2022). ecoinvent database v3.9.1, system model: Allocation, cut-off by classification. Zürich, Switzerland.

KOBiZE (2024). Wskaźniki emisyjności CO2, SO2, NOx, CO i pyłu całkowitego dla energii elektrycznej. National Centre for Emissions Management (KOBiZE), Warsaw, Poland.

Multicert Sp. z o.o. (2024). General Programme Instructions of the EPD Poland Programme, Warsaw, Poland.

EPD VERIFICATION:

The verification procedure for this Environmental Product Declaration (EPD) has been carried out in accordance with the requirements of ISO 14025 standards. Once the verification process is complete, the EPD remains valid for a period of 5 years. There is no need to recalculate the parameters contained in the EPD after this period, provided that the data underlying the declaration have not changed substantially.

EPD CONTRIBUTORS

Manufacturer representative	Barbara Łukasiak
EPD verifier	Izabela Sztamberek-Sochan, PhD.

Note: The sole ownership, liability, and liability of this declaration are with the owner. Construction product declarations may not be comparable if they do not comply with EN 15804. For detailed information on comparability, please refer to EN 15804 and ISO 14025.

EPD Polska Certificate

CERTIFICATE

TYPE III EPD DECLARATION

(ENVIRONMENTAL PRODUCT DECLARATION)

Reg. No. EPD-P 02.10.2025

This document confirms that the Environmental Product Declaration developed by **Fovere Sp. z o.o.** for

Acoustic Panels Fovere

manufactured in accordance with standards:

EN 13501-1, EN ISO 11654 and EN ISO 354,

meets the requirements of standards **EN 15804:2012+A2:2019** and **ISO 14025**, and that the data contained therein has been prepared correctly.

The Declaration was published on October 13, 2025 and is valid until October 13, 2030, or until it is deregistered or its publication on the website www.epd.org.pl is discontinued.

Authenticity of this certificate can be confirmed in. the public register at www.epd.org.pl

Izabela Sztamberek-Sochan, Ph.D.

EPD Polska Verifier

atamberek

TOUTICERY OF THE PROPERTY OF T

Grzegorz Suwara

CEO Multicert Sp. z o.o.

Warsaw, October 13, 2025